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Abstract

Recently, there has been an explosive growth in Internet ser-
vices, greatly increasing the importance of data center sys-
tems. Applications served from “the cloud” are driving data
center growth and quickly overtaking traditional worksta-
tions. Although there are a many tools for evaluating compo-
nents of desktop and server architectures in detail, scalable
modeling tools are noticeably missing.

We describe BigHouse a simulation infrastructure for data
center systems. Instead of simulating servers using detailed
microarchitectural models, BigHouse raises the level of
abstraction. Using a combination of queuing theory and
stochastic modeling, BigHouse can simulate server systems
in minutes rather than hours. BigHouse leverages statistical
simulation techniques to limit simulation turnaround time
to the minimum runtime needed for a desired accuracy. In
this paper, we introduce BigHouse, describe its design, and
present case studies for how it has already been applied to
build and validate models of data center workloads and sys-
tems. Furthermore, we describe statistical techniques incor-
porated into BigHouse to accelerate and parallelize its sim-
ulations, and demonstrate its scalability to model large clus-
ter systems while maintaining reasonable simulation time.

1. Introduction

Recently, there has been an explosive growth in Internet ser-
vices, greatly increasing the importance of data center sys-
tems. Ever more applications are served from “the cloud”
to mobile devices, quickly overtaking traditional worksta-
tions. Whereas there are a large number of tools for evaluat-
ing components of desktop and server architectures in detail
[3, 6, 8, 22, 34, 37], these detailed modeling tools are not
well suited to study data center systems. Conventional archi-
tecture simulators are often six orders of magnitude slower
than the hardware they model, and simulation turnaround
times grow linearly (or worse) with the number of modeled
systems and cores. Furthermore, the memory footprint of
the simulation is often as large or larger than the simulated
workload. Simulating even modest clusters (10’s of servers)
with such tools is intractable.

This paper introduces BigHouse, a simulation infrastructure
for data center systems. Instead of simulating servers us-
ing detailed microarchitectural models, BigHouse raises the
level of abstraction. Using a combination of queuing the-
ory and stochastic modeling, server clusters can be simulated
in minutes rather than hours. BigHouse leverages statistical
simulation techniques to limit simulation turnaround time to
the minimum runtime needed for a desired accuracy. Our
initial experiments find that BigHouse is surprisingly accu-
rate and that it can be extended to scale up to large cluster
systems while maintaining reasonable simulation time.

BigHouse is based on the stochastic queuing simulation
(SQS) methodology [25, 27]. Rather than simulate work-
loads at the granularity of an instruction, memory, or disk
access as in conventional simulation tools [6, 8, 22, 34, 37],
SQS is built on the theoretical framework of queuing the-
ory, where the fundamental unit of work is a task (a.k.a job).
Tasks are characterized by a set of statistical properties—
random variables that describe their length, resource require-
ments, arrival distribution, or other relevant properties—
which are collected through observation of real systems.
SQS abstracts the data center as an interrelated network of
queues and power/performance models describing the rele-
vant behaviors of software/hardware components. The dis-
crete event simulation uses a variety of statistical sampling
techniques to provide estimates of selected output variables
(e.g., 95th-percentile response time) with quantifiable mea-
sures of confidence, while enabling parallel simulation to
provide strong scaling to reduce turnaround time.

Under pen-and-paper analysis of queuing models, statistics
like the moments of the arrival and service distributions are
used to calculate performance measures in closed form. We,
and others [18], have found that easily-analyzed queuing
models (e.g., M/M/1) often poorly represent internet ser-
vices. More generic models, such as the G/G/1 or G/G/k
queue (generalized inter-arrival and service time distribution
and either 1 or k servers), have no known closed-form so-
Iution. Approximations can be used; however, it has been
shown their accuracy is often inadequate, especially when
only using a few moments [18]. Instead, with BigHouse, we
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Figure 1: Overview of the BigHouse infrastructure flow. A system is (a) instrumented to derive workload inter-arrival and service time
distributions and (b) characterized to create a model of system behavior (e.g., power-performance settings). From these inputs, simulations

derive estimates for new system designs and/or configurations.

turn to simulation to exercise these analytically-intractable
models. Although this does incur non-negligible simulation
time, users of BigHouse need not be experts in queuing the-
ory and models integrated into the framework can be reused.

In this paper, we first describe the software architecture
and details of the BigHouse simulation infrastructure, and
a general methodology for its use. We analyze factors affect-
ing BigHouse simulation turnaround time, and discuss the
mechanisms it uses to ensure desired statistical confidence
in its output metrics and parallelize simulations over a clus-
ter of simulation hosts.

BigHouse is best suited for studies investigating load balanc-
ing, power management, resource allocation, hardware pro-
visioning, or cost optimization for clustered, distributed, or
multi-tier data center applications. BigHouse is not appro-
priate for studies that require instruction-grain or microar-
chitectural detail; for example, it is not appropriate for the
exploration of cache hierarchy designs (because it does not
model individual memory accesses) or compiler optimiza-
tions (because it does not execute binaries).

We describe three example studies where researchers have
used BigHouse, a published study of the performance impli-
cations of power management for Google web search [24], a
published study of scheduling mechanisms to coalesce idle
periods in manycore systems [26], and a demonstration of
how BigHouse could be used to analyze a data-center-wide
power capping scheme. The former two case studies have
been validated against hardware measurements, while the
last demonstrates BigHouse’s scalability. In each, we out-
line the steps taken to construct workload and system models
and, where applicable, the validation performed to demon-
strate that BigHouse makes reasonable predictions.

2. BigHouse

In BigHouse, the numerous systems comprising a compute
cluster are represented as a generalized queuing network, de-
scribed by the BigHouse user through configuration files and
in concise Java code. A task in the queuing model corre-

sponds to the most natural unit of work for the workload un-
der study, such as a single request, transaction, query, and so
on. The BigHouse queuing network captures the processing
steps through which tasks must proceed at a level of detail
appropriate to the question under study. Each server in the
queuing network is coupled to power/performance models
that modulate the service rate and generate output variables
of interest (e.g., task execution time or energy consump-
tion). This model is then exercised on the BigHouse simu-
lation engine, a distributed discrete-event simulator, which
samples output metrics and terminates the simulation upon
convergence—that is, when each output variable has been
measured to a desired level of statistical confidence. Fig-
ure 1 provides an overview of how BigHouse is used, which
comprises two independent steps: (1) characterization of the
workloads and system of interest and (2) simulation.

2.1 Software Architecture

The software architecture of BigHouse is divided into two
main modules. The first module is used to describe the sim-
ulated data center, and comprises a collection of models
and events similar to a classic discrete-event simulator. Big-
House uses an object-oriented hierarchy to represent vari-
ous parts of the data center such as servers, racks, etc. A
BigHouse user can either use these existing objects to de-
scribe a particular data center architecture, or can extend
this hierarchy to model new functionality if more function-
ality is needed. For example, the server model might be sub-
classed or extended to include state variables for various
ACPI power modes, which modulate task run time, control
ACPI state transitions, and output power/energy estimates.
Configuration files describe how BigHouse should instanti-
ate and connect these objects and supply parameters such as
number of cores, peak power, etc.

The second module of BigHouse orchestrates the simula-
tion. This module includes the BigHouse statistics package,
which manages warmup and statistical independence tests,
tracks specified output metrics and terminates the simula-
tion when output metric estimates have reached statistical



Table 1: Workload models included with BigHouse.

Workload Interarrival Service Description
Avg. o Cy  Avg. o Cy
DNS 1.1s 1.2s 1.1 194ms 198ms 1.0  Departmental DNS and DHCP server under live traffic.
Mail 206ms  397ms 1.9 92ms 335ms 3.6  Departmental POP and SMTP server under live traffic.
Shell 186ms  796ms 4.2 46ms 725ms 15 Shell login server under live traffic, executing a variety of interactive tasks.
Google 319us  376pus 1.2 42ms  4.8ms 1.1  Leaf node in a Google Web Search cluster. See [24] for details.
Web 186ms  380ms 2.0 75ms 263ms 3.4  Departmental HTTP server under live traffic.

convergence. It also provides a communication and control
infrastructure to distribute a BigHouse simulation across a
cluster of cores and/or machines. Users will typically not
modify any of these support modules.

2.2 Workload and System Characterization

To apply BigHouse to implement a particular experiment, a
user must either reuse or create system model components
that implement models of the salient workload characteris-
tics and output metrics. These models are typically derived
from characterizations of actual hardware. Characterization
involves both an online and offline component.

Workload Modeling. Instead of using application binaries
or traces, as in a traditional simulator, BigHouse represents
workloads as empirically measured distributions of arrival
and service times for each kind of task in the system. The
workload model may also include distributions for other crit-
ical task parameters (e.g., tasks’ network traffic if model-
ing network links). Prior BigHouse users have constructed
these empirical workload models online, by instrumenting a
live system. Typically, this process involves instrumenting a
binary such that the timing of task arrivals and their dura-
tion are recorded. Later, these traces can be processed to de-
rive the desired distributions. It is necessary to capture these
workload models online, under live traffic, because inter-
arrival processes depend greatly on the users of an internet
service.

BigHouse uses these distributions to generate a synthetic
event trace to drive its discrete event simulation. Because
it does not use traces or binaries, BigHouse workload mod-
els can be represented compactly—a typical distribution oc-
cupies less than 1 MB, whereas event traces often require
multi-gigabyte files. Furthermore, in contrast to binaries,
which industry is often loathe to disseminate, public dis-
semination of inter-arrival and service distributions is sig-
nificantly easier, as they do not require releasing proprietary
software.

The BigHouse distribution includes five example workload
models that have been used in the studies described in Sec-
tion 3. Table 1 briefly describes each workload. All the work-
loads BigHouse has been used to study to date follow a
request-response model—a client issues a request, the server
processes it and after some amount of time, responds. Each

workload comprises a pair of distributions, represented via
fine-grained histograms: the client request inter-arrival dis-
tribution and the response service time distribution. These
distributions were all captured on real hardware, using vari-
ous forms of instrumentation to log arrival and service times.
Four workloads (Mail, DNS, Shell, Web) are derived from
traces of live traffic to departmental servers. The Google
workload was captured by monitoring a web search leaf
node in a test cluster while replaying traces of actual search
logs; the workload and measurement methodology are de-
scribed in detail in [24].

Whereas these sample workloads make it easy for a user
to get started with BigHouse, it is important to emphasize
their limitations. First, they all model simple client-server
roundtrip interactions. The BigHouse object model must
be extended if a user wishes to model a workload with
more complicated communication patterns (e.g., modeling
all three tiers of a three-tier web service). Second, the service
time distributions have been captured on particular hard-
ware, and may have a different shape on other hardware
(e.g., a web server on a Atom-class system may have a
markedly different distribution than on a Xeon-class sys-
tem). Hence, it may not always be valid to simply scale
the service time distributions to represent faster/slower hard-
ware.

BigHouse also suffers from the same limitation as other tools
that generate synthetic traces [14]: only those correlations
among events captured in the input models will be present in
the synthetic trace. Though it is possible to exercise the Big-
House discrete-event simulator by replaying traces directly
(which eliminates some sampling difficulties, such as sam-
ple auto-correlation), it remains unclear how to replay traces
and obtain statistically rigorous performance estimates if the
simulated system differs substantially from the one where
traces are collected. BigHouse’s sampling methods are built
on the assumption that event sequences are generated syn-
thetically by random draw from the empirical distributions.

System Modeling. To model a particular system, the Big-
House user provides concise Java code that tracks state vari-
ables associated with each task processing step and gen-
erates output metrics associated with each task. The user-
supplied code accepts input tasks (synthesized by BigHouse)
and calculates corresponding output metrics. For example, in



=5 Ne=7

44444%%%%%%%44%44%44%44%44%44% !

/=3 (i.e., keep every 3rd observation)

| —> Recorded Observation ----- > Discarded Observation

Quantile Estimate
Generated

Simulation

1) Warm-up 2) Calibration

3) Measurement

‘ Completes

4) Convergence

Figure 2: The Sequence of Phases in a BigHouse Simulation: At first, all observations are discarded during warm-up, avoiding cold-
start bias. Next, during a brief calibration phase, a small sample is collected to determine the appropriate lag spacing and histogram
configuration. The majority of the simulation is spent in the measurement phase, where observations are taken with sufficient spacing to
ensure independence. Finally, when the desired statistical confidence is achieved, the simulation terminates, outputting quantile and mean

estimates.

an experiment modeling power management in a multi-core
server, the input task might be characterized by a size, state
variables might track the ACPI power state of each core,
while output metrics might include the time and energy con-
sumed by the task. Typically, the relationship between input
tasks and output metrics described in system models are de-
rived from offline characterization of a real system. In Sec-
tion 3, we present concrete examples of system characteriza-
tion and how these models were incorporated into BigHouse.

2.3 Simulation

The BigHouse simulation engine synthesizes a task trace
from the workload models and exercises the user-described
queuing network and system models via a distributed dis-
crete event simulation. The core functionality of the Big-
House discrete-event simulator does not differ substantially
from other tools for simulating queuing networks. For a
detailed survey of queuing models, we refer the reader to
[19]. BigHouse augments conventional queuing networks
with system models (e.g., the multicore power-performance
model mentioned above) and sampling mechanisms that
monitor and quantify the confidence of output metric es-
timates as the simulation proceeds.

For a given simulation, in addition to the data center con-
figuration (e.g., the number of servers, workloads, etc.), the
BigHouse user must specify a set of output metrics. The
simulation’s output metrics are aggregations of the per-task
metrics generated by the user-supplied system model, which
are recorded, analyzed, and reported with statistical confi-
dence estimates. For example, when a task is completed,
its response time can be recorded and then aggregated into
a mean or quantile output metric. The user specifies each
output metric along with a desired accuracy and confidence
level for quantile and mean estimates.

Simulation Sequence. BigHouse simulations proceed by
exercising the discrete-event queuing simulation, creating
task arrival events through random draws according to the
distributions captured in the workload model. We refer read-
ers to the literature for details on implementing discrete-

event queuing simulations [16]. We focus our discussion on
the sampling methods at work in BigHouse, detailing the
progression of a simulation from the perspective of an ob-
served output metric (e.g., server response time or power
consumption). The phases of a BigHouse instance, illus-
trated in Figure 2, are:

1. Warm-Up — A simulation begins in an initial transient
state, where observations are biased by the initial simula-
tion state (e.g., all queues are empty). To avoid this cold-
start effect, the simulation must undergo a warm-up phase
and is exercised for N,, observations, during which all ob-
servations are discarded. Unfortunately, a reliable method
for determining /V,, has been the subject of years of debate
[29]. To date, no rigorous method for automatically detecting
steady-state is available and N,, must be explicitly specified
by the user.

2. Calibration — One of the key challenges that must be
addressed when drawing a sample from a discrete event sim-
ulation is ensuring independence among the sampled ob-
servations. Using successive observations from a queuing-
based simulation has been shown to introduce bias into es-
timates because observations tend to be autocorrelated (i.e.,
nearby observations are not independent) [11]. However, it
has also been demonstrated that if observations are spaced
sufficiently apart—Dby keeping only every /th sample—they
can be treated as independent [10]. Determining this mini-
mum spacing, [, is accomplished with the runs-up test de-
tailed in [20]. The major consequence of this approach is
that steady-state simulation length is inflated by a factor of
l. Though a sample size of N = n observations may be suf-
ficient to achieve a given confidence in an i.i.d. draw, since
I — 1 observations are discarded for every 1 taken, a total of
N = [-n events must be simulated to achieve the target sam-
ple size. A small caveat is that this method often increases
sample variance [12], further increasing n.

During the calibration phase, BigHouse performs the runs-
up test to determine the lag spacing, [, between observations
and the proper histogram binning parameters to enable quan-
tile estimates.
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aggregates the histograms and reports estimates.

3. Measurement — Once the simulation enters steady-state,
observations are collected to populate the histogram repre-
sentation of each output metric. The majority of simulation
runtime is spent in this phase; the other three phases impose
insignificant runtime overhead (in single-threaded simula-
tions; however, their overheads can grow dominant in par-
allel simulations. See Section 2.4).

4. Convergence — An output metric is considered con-
verged once the observed sample size is sufficient to achieve
the desired confidence interval. If the sample has been gen-
erated using distributed simulation (Section 2.4), it is coa-
lesced at this point. Finally, estimates of quantiles and aver-
ages can be reported.

Accuracy and Confidence. An estimate of an output metric
has an associated accuracy, €, and confidence level, 1 — a,
that together form a confidence interval. The value e defines
the half-width of a confidence interval in the same units
as the output metric (e.g., response time with +50ms). We
normalize this value by the mean estimate, X, to enable
meaningful comparison across multiple output metrics:

E=¢/X (1)

With this definition, a given E describes the desired accuracy
as a percentage (e.g., response time with +5%). The confi-
dence level of an estimate describes the expected percentage
of estimates that would fall within the confidence interval
if the simulation were repeated a large number of times. A
confidence level of 95% is common, and we use this value
for the remainder of this paper.

To determine the confidence interval for mean estimates
(e.g., mean response time), we leverage standard techniques
for large-sample analysis. According to the central limit the-
orem, the sampling distribution of a mean value estimate
tends towards the normal distribution as sample size in-
creases. Hence, we can determine the sample size needed

for a given confidence by:
Z127a/2 -o?

N,
m 62

= (2)
Where Z;_,, comes from the standard normal: it is the value
of the standard normal distribution at the (1—ca/2)™ quantile
and is 1.96 for 95% confidence. o is the sample standard
deviation and € is the half-width of the desired confidence
interval.

Confidence intervals for quantiles (e.g., the 95th-percentile
latency) can also be derived using the central limit theorem
[10].
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The notation is the same as for mean estimates with the ad-
dition of ¢ as the desired quantile. To find an exact quantile,
one would need to record and sort all observations in the
sample. The sample size required for even a single output
metric can be quite large. Accordingly, recording and sorting
the entire sample sequence to determine quantiles imposes a
large burden. However, space-efficient approximations us-
ing online algorithms are described in [9, 10]. We use the
method presented in [10] to maintain a histogram represen-
tation of an observed variable, drastically reducing memory
overhead. This method requires the histogram binning pa-
rameters to be determined in advance; we do so during the
calibration phase of the simulation sequence (see below).

Typically, it is useful to know both the mean and at least one
quantile of a given output metric. In this case, the required
sample size for the desired confidence will be N=max(N,,,
Ny).

Observing Multiple Output Metrics. Typically, multiple
metrics are observed in a single simulation. For simplic-
ity, we have explained a sequential procedure and illustrated
the sequence in Figure 2 in terms of a single output met-
ric. However, it is important to understand that there is an



associated sequence for each output metric in the simula-
tion. There are two important constraints on the simulation
progression when targeting multiple outputs. First, the sim-
ulation may not progress out of the warm-up phase until N,,
observations have been collected for all output metrics. This
constraint ensures that measurement does not take place un-
til the entirety of the model is warm. Second, the simulation
may not terminate until all outputs have a sufficient sample
size to reach convergence. Again, the slowest convergence
will determine simulation runtime.

2.4 Parallel Simulation

The procedure of a distributed BigHouse simulation is out-
lined in Figure 3. A simulation cluster comprises a single
master and many slave machines. First, the master executes
just the warmup and calibration phase of a serial BigHouse
simulation. After calibration, the master constructs the ap-
propriate histogram bin structure, which is forwarded to the
slaves.

Next, the master broadcasts the histogram setup and simula-
tion configuration and each slave begins their own BigHouse
instance. Each slave must use a unique seed for their ran-
dom number generator. The BigHouse process at the slave
is nearly identical to a single-machine BigHouse simula-
tion, requiring warmup, calibration and steady-state mea-
surement, except that the slave’s calibration phase does not
determine the histogram setup. Also, slaves do not deter-
mine when the simulation converges; the master monitors
the slaves’ progress and signals convergence when aggregate
sample size is sufficient across the entire cluster.

Once the aggregate sample is large enough, the master col-
lects all the histograms and combines them to form a single
estimate. In a number of ways, the master-slave relationship
resembles the MapReduce framework [13]—a single pro-
gram is executed with high fan-out across a number of slave
machine (map) with different inputs (the random seed). Af-
ter completion, their results are then merged (reduce) to form
a result.

3. Validated Case Studies

In this section we provide examples of experiments using
BigHouse that have been validated against real hardware.
These case studies demonstrate that BigHouse can provide
accurate server performance estimates.

3.1 Power Management in Google Web Search

Our first case study is taken from [24] in which we used
BigHouse to understand the performance effect of processor
and memory low-power modes for Google Web search. The
goal of the study was to understand how to achieve energy-
proportional operation in Web search servers, while main-
taining reasonable latency. Using BigHouse, we were able
to predict the effects of intrusive experiments such as chang-
ing server performance states.

As described in Section 2.2, empirical arrival and service
distributions must first be collected for the workload. We ob-
tained the inter-arrival distribution by instrumenting a pro-
duction binary to track the arrival sequence of live traf-
fic. To measure the service time distribution, queries were
injected one-at-a-time into an isolated Web search node,
thereby ensuring no queuing within the search node. Ac-
cordingly, query service times could be measured simply as
the the difference between the finish and arrival time of the
query. The distributions were both measured over large sam-
ples of queries.

We next measured the power-performance behavior of the
isolated search node to construct a system model. Through
offline experimentation, we varied processor frequency and
memory latency and measured the resulting average service
time for an individual query at each point in the space of
processor and memory performance settings. From this data,
we built a BigHouse system model that modulated service
times and reported power estimates for each query.

Finally, with these characterization steps complete, Big-
House can be used to estimate the effects of power man-
agement policies under various loads. Load can be varied
by scaling the inter-arrival distribution. Figure 4 provides
a partial view of the validation of the BigHouse simula-
tion results. Lines represent 95th-percentile latency as pre-
dicted by BigHouse and points represent measured data from
real hardware. Because the experiment varies both proces-
sor and memory settings, the performance setting space is
2-dimensional; the figure shows a subset with fixed memory
performance and variable CPU performance. The horizontal
axis shows utilization (in terms of percentage of maximum
queries per second or QPS) varying over the typical oper-
ating range. The average error across all validated points is
9.2%.

To underscore the advantage of BigHouse’s empirically
measured workloads and simulation over pen-and-paper
analysis, it is useful to contrast alternative models for the
system’s inter-arrival distribution. Figure 5 reports the nor-
malized 95th-percentile latency measured on real hardware
as a function of QPS load for three different inter-arrival dis-
tribution scenarios. For “Low C,”, queries arrive at a near-
uniform rate with little variance. The “Exponential” series
represents an exponentially distributed inter-arrival process;
a common assumption when analyzing queuing models by
hand. Results using the actual inter-arrival distribution mea-
sured in production are shown by “Empirical”; the actual
distribution has greater variance than either synthetic dis-
tribution. The important trend in this example is that poor
assumptions about inter-arrival times (made in the interest
of expedient pen-and-paper analysis) can lead to large esti-
mation errors.
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Figure 4: Validation of Google Web search performance
scaling. Points depict measured 95th-percentile latency of Web
search on production hardware at various performance settings.
Scpu is the relative processor slowdown. Lines are latency as
predicted by BigHouse. Overall error is 9.2%. Data from [24].

3.2 Scheduling for Idleness

In our second case study, BigHouse was used to study
DreamWeaver [26], a scheduling mechanism that seeks to
coalesce idle periods to enable the use of idle low-power
modes (e.g., PowerNap [23]) in many-core servers. The
scheduling mechanism is designed to align idle and active
times across all cores as much as possible, to maximize the
intervals where all cores are idle and the entire system can
be put into a deep sleep mode. The essence of the scheduling
mechanism is to preempt execution and enter deep sleep if
there are fewer outstanding tasks than cores. However, if any
task is delayed by more than a pre-specified threshold, the
system wakes up and execution resumes even if some remain
idle. In essence, the technique trades per-request latency to
create opportunities for deep sleep.

We used BigHouse to predict the effectiveness of this
scheduling mechanism and validated the BigHouse predic-
tions against a software implementation of the scheduling
mechanism for the Solr open source Web search system [4].
Solr is a full-featured web indexing and search system used
in production by many enterprises to add local search capa-
bility to their web sites. The validation experiment exercised
Solr with the AOL query set [1] and an index of Wikipedia
[2]. The scheduling mechanism and sleep/wake transition
delays were implemented in a BigHouse system model, and
arrival and service distributions for Solr were captured us-
ing an approach similar to that described for the Google
web search case study (see Section 3.1). The search latency
distribution from the software prototype and the BigHouse
model were then compared.
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Figure S: Inter-arrival distribution has a large effect on la-
tency. While an exponential distribution is typically assumed in
analytic modeling, it clearly differs form the latency observed
with empirically measured distributions. Similarly low C, dis-
tributions (used by many loadtesters), do not reflect real traffic
accurately. Data from [24].
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Figure 6: Validation of scheduling for idleness. The schedul-
ing mechanism trades latency for idleness by intelligently delay-
ing and preempting requests. This figure illustrates the fraction of
time an entire server spends idle as a function of 99th-percentile la-
tency. The “Prototype” series depicts measurements of the schedule
mechanism implemented on real hardware and the “Simulation” se-
ries shows BigHouse-derived results. Data from [26].

Figure 6 illustrates the validation results. The Figure shows
the fraction of time the system is idle (either naturally or
as forced by the scheduler) plotted against 99th-percentile
query latency, which both vary as a function of the pre-
specified maximum per-task delay threshold (i.e., the tuning
knob of the scheduling mechanism). The “Prototype” series
shows the measured results of the software implementation



running on real hardware, whereas “Simulation (BigHouse)”
shows the BigHouse-derived estimates. There is a close cor-
respondence between the simulated and measured results.

4. Simulation Performance

We next report on the performance of BigHouse in terms
of simulation turnaround time and scalability. Through dis-
cussion of a hypothetical experiment built on top of Big-
House, we demonstrate the idiosyncrasies of the framework
that affect runtime. We explore how BigHouse performance
changes as we scale up the size of the modeled cluster.

4.1 Extending BigHouse — An example

Power capping is technique that allows a data center to de-
ploy more servers than its provisioned power infrastructure
can support at peak. It has been observed that—especially in
large installations—servers rarely draw peak power concur-
rently [15, 21, 30, 35]. Because a cluster’s aggregate power
draw is typically significantly less than the potential sum
of all its servers’ peak power, provisioning the number of
servers based on peak power is wasteful. Although we do
not have access to thousand-server clusters, we demonstrate
that simulating such systems is feasible with BigHouse. We
hope this demonstration motivates future research leverag-
ing this framework.

To amortize the high cost of power infrastructure, it is de-
sirable to provision servers based on their average power
consumption. While such a scheme might work in the com-
mon case, rare power spikes across many machines do occur,
which can exceed the provisioned capacity of the power in-
frastructure, tripping a circuit breaker and taking the clus-
ter offline. Power capping solves this problem by assign-
ing hard limits, or “caps”, to each server’s power consump-
tion. These limits are enforced by throttling a server’s per-
formance thereby reducing its power consumption.

To evaluate the ability of BigHouse to simulate large-
scale systems, we use it to model a dynamic power cap-
ping scheme for a large cluster populated with quad-core
servers. Our case study uses a relatively simple power cap-
ping scheme; we wish to demonstrate the scalability of
BigHouse system rather than explore sophisticated power
capping strategies. Servers are assigned a power budget,
the maximum power they may draw over a given interval.
We use a fair, proportional budgeting mechanism such that
every server gets a budget in proportion to its utilization
in the previous budgeting interval. Budgets are calculated
every second. At each budgeting epoch, the capping level
can be observed and is defined as how much more power
a server would draw, beyond its budget, without a cap. We
assume idealized DVFS as the power-performance throt-
tling mechanism. The salient feature of this power capping
scheme (from the point of view of measuring BigHouse per-
formance) is that it is global—the system models within
BigHouse must interact each simulated second to determine

each server’s power cap each epoch. Hence, the behavior of
all system models are coupled.

Power-Performance Model. To simulate power capping,
we must implement a system model for power savings and
performance loss under DVFS. We use the linear model
validated by [15] and [31]:

Prowal = PDynamic U + Pue (4)

Where U is the average server utilization, Ppynamic represents
the dynamic range of the server’s power, and Py the idle
power. Our power model is based on typical server specifi-
cation from industry [5]. For simplicity, we assume that the
CPU is the only component with a dynamic power range:

3
Pepy (fli;() )

Where f is the operating clock frequency of the CPU. We
assume that this frequency can be continuously scaled from
f = 1.0to f = 0.5, even though in practice these set-
ting are discrete. The exact scaling of DVFS with respect to
frequency has been receiving increasing scrutiny [7]; how-
ever, since our focus is on simulator performance rather than
power capping efficacy, we assume the classic cubic scaling.

Next, we require a performance model to understand the
slowdown imposed by various DVFS settings. The slow-
down in service rate due to DVFS can be modeled as:

f
u’u'w( +p-(1-a) (6)
fMax
For some «, which represents how “CPU-bound” an appli-
cation is. We assume an « of 0.9, which would be typical of

a CPU-intense application (e.g., LINPACK).

The power-performance model described here is a simple
example of the kind of model that can be integrated into
BigHouse; the particular details of this model are not critical
to the simulation approach.

Unless otherwise specified, all simulations are run to achieve
95% confidence of E=.05 for both the average value and a
95th-percentile quantile.

In Figure 7 we demonstrate how simulation time scales with
the size of the simulated cluster. Simulation of a ten-server
system is trivial, taking no longer than a minute to converge
at the desired confidence. As we increase the number of
servers, simulation time increases roughly linearly. While
simulation time across our workloads varies, the scaling
relationship is the same. Even at three orders of magnitude
greater cluster size (10,000 servers), simulations take hours
rather than days.

It is important to note that the primary cause of increased
simulation time is the overhead of maintaining and updating
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Figure 7: Simulation Time Scaling: Simulation time required for
convergence scales roughly linearly with the number of servers sim-
ulated. Scaling simulation size typically does not increase the variance

Figure 8: Sensitivity to Workload Distribution Variance: Increas-
ing service distribution coeff. of variation (C, ) leads to increased vari-
ance in the target variables, requiring a disproportionate increase in

of the output variables, so the required sample size does not increase
significantly. Instead, the overhead of maintaining the discrete-event-
simulation state is the main cause of increased runtime.
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Figure 9: Sensitivity to Accuracy and Target Metrics: Runtime
is affected by the selected output metrics and desired confidence in-
tervals. Monitoring response and waiting time (+Waiting) increase
simulation time over monitoring response time alone, because most
requests do not experience queuing, which makes “waiting” obser-
vations more rare. Additionally including power capping as an out-
put metric (+Capping) further increases runtime because capping
epochs occur less frequently than request completions.

the enlarged state of the discrete-event simulation. The sam-
ple size required for convergence, however, depends only
on the variance of the output metrics and may be reduced
slightly due to averaging effects in larger clusters (as in the
case of power capping).

For a given system size, simulation time is strongly depen-
dent on the workload model. To understand this effect, we

simulation time.

simulate a system where the workload’s service distribu-
tion is adjusted to a desired coefficient of variation, C, (the
standard deviation normalized by the mean). We use the re-
sponse time as the sole output metric because it is most de-
pendent on the (', parameter. Figure 8 shows how the ac-
curacy of an output metric, F, reaches a target value of .05
with the number of simulated events for three values of C,.
For larger values of E, the difference in the number of simu-
lated events across values of C,, is small; however, at .05, the
required number of simulated events becomes pronounced.
This phenomenon is a direct implication of Equations 2 and
3—simulation time increases quadratically with increased
accuracy and the standard deviation of the worst case across
output metrics. In our example, the C,, of the service time
strongly affects response time variance; however, in more
complex systems the relationship may not be as clear.

Finally, we evaluate how the selected output metrics impact
runtime. We use the same power capping system as before,
but vary the set of output metrics and their desired accuracy.
First, we monitor only response time (“Response”). Increas-
ing the desired accuracy drastically increases runtime, but
simulations require at most a few minutes. Adding a wait
time (“+Waiting”) output metric greatly increases runtime.
This increase occurs because wait events are much less fre-
quent than request completion events (i.e., queuing is rel-
atively infrequent). Finally, additionally monitoring power
capping (“Capping”) results in a further, slight increase in
runtime (note that results are on a log scale).

4.2 Parallel Simulation Performance

We demonstrate the ability for BigHouse to parallelize
across multiple slaves using our power capping example.
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Figure 10: Parallel Simulation: BigHouse achieves speedup by
parallelizing measurement across multiple slaves. The primary lim-
iting factor to parallel scalability is the calibration phase, which re-
quires 5000 observations for the runs-up test on each slave. Since
this simulation requires a sample size just under 40,000, calibration
imposes an Amdahl bottleneck.

We run the simulation with £ = .01 so that it is suffi-
ciently long to gain benefit from parallel execution. Figure
10 demonstrates the speedup gained by using an increasing
number of slaves. We distribute the slaves across 4 hosts
such that each host has an equal number of slaves (e.g., with
8 total slaves, each host has 2 slaves).

A system with perfect parallel scaling would achieve a
speedup equal to the number of slaves (“Ideal”). BigHouse
demonstrates good scaling up to 8 slaves (“SQS”), but Am-
dahl effects limit scalability beyond 16 slaves. Each slave
must execute a 5000-observation calibration phase to com-
plete the runs-up test. As this particular simulation problem
requires a sample size around 40,000, calibration overhead
becomes dominant beyond 16 slaves.

5. Related Work

Previous studies have attempted to parallelize discrete-event
simulations by executing different sections of the modeled
system at the same time [17, 28]. Generally, such paral-
lelization is difficult because the system must have a consis-
tent state and requires explicit communication and/or lock-
ing of data structures. In contrast, our parallelization strat-
egy, which distributes generation of independent observa-
tions for sampled output metrics, does not require synchro-
nization, greatly reducing design complexity and communi-
cation overhead.

Our work bears similarity to architectural simulators that use
statistical simulation [14, 32] and/or sampling techniques
[33, 36, 37, 38]. These methods also provide significant
reduction in simulation time by either simulating with a

statistical abstraction and/or by simulating only those events
necessary for the desired level of statistical confidence.

6. Conclusion

We have introduced BigHouse, a simulation infrastructure
for data center systems. By raising the level of simulation
abstraction, BigHouse can model servers or clusters sig-
nificantly faster than traditional microarchitectural simula-
tors. We describe two studies that have validated BigHouse-
derived results against hardware and find that the accuracy
of the system is quite good. Finally, we analyze the scalabil-
ity of BigHouse to demonstrate that it can be used to study
large cluster systems.
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